Internal structure evidence of validity

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit, Universiti Sains Malaysia. wnarifin@usm.my / wnarifin.github.io

Updated: May 9, 2023

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Outlines

- 1. Measurement validity & reliability
- 2. Classical validity
- 3. The validity
- 4. Factor analysis
- 5.Reliability

1. Measurement validity & Reliability

- Measurement \rightarrow Process of observing & recording.
- Measurement validity \rightarrow Accuracy.
- Measurement reliability → Precision, consistency, repeatability.

2. Classical validity

- 3Cs:
 - 1.<u>C</u>ontent
 2.<u>C</u>riterion
 3.<u>C</u>onstruct

3. The validity

- Unitary concept.
- Degree of evidence → Purpose & Intended use of a tool.
- Evidence from 5 sources:

1.Content.

2.Internal structure.

- 3.Relations to other variables
- 4.Response process.
- 5.Consequences.

The validity

- <u>Construct</u> Concept to be measured by a tool.
- *Construct* = *Concept* = *Domain* = *Idea*
- Internal structure evidence
 - How <u>relationship</u> between items & components reflect <u>construct</u>.
 - -Analyses:
 - 1.Factor analysis
 - 2.Reliability

4. Factor Analysis

- Factoring
- Factor analysis

Factoring

- <u>Group</u> things that have <u>common</u> concept.
- <u>Simplify</u>.
- Factoring = Grouping.
- Factor = Construct = Concept.

Orange, motorcycle, bus, durian, banana, car

Anything in common?

10 May 2023

Internal Structure

9

• Group them

Orange, durian, banana Motorcycle, bus, car

into two groups

• Name the groups

Fruit	Motor vehicle		
Orange	Motorcycle		
Durian	Bus		
Banana	Car		

factor out the common concept.

Likert-type options [Fruit] 1-2-3-4-5 [Motor Vehicle]

ltems	1	2	3	4	5	6
1. Orange	1.00					
2. Durian	.67	1.00		Cor	relation m	atrix
3. Banana	.70	.81	1.00			
4. Motorcycle	.11	.08	.05	1.00		
5. Bus	.08	.12	.09	.75	1.00	
6. Car	.18	.12	.22	.89	.83	1.00

	Factors				
	Items	Fruit	Motor vehicle		
	1. Orange	X	_		
	2. Durian	X	-		
	3. Banana	X	-		
	4. Motorcycle	_	X		
	5. Bus	_	X		
	6. Car	_	X		
	<u>Co</u> M FA	<u>rrelated</u> items → <u>Group</u> . fore items? Impossible. → objective factoring .			
Mav 2023		Internal Structure			

1(

FA

- Multivariate analysis >1 outcomes/DVs/Items.
- Numerical items, e.g. Likert scale, VAS scores, laboratory results etc.
- Group correlated items \rightarrow Factor.
- Factors <u>extracted</u> from items \rightarrow Latent (unobserved) IVs.
- RQs:
 - Number of factors?
 - Strength of Item-Factor correlation (factor loading)?
- <u>Recall</u> MLR: 1 DV many IVs (observed).

Classification

1. Exploratory FA/EFA

2. Confirmatory FA/CFA

- Exploratory analysis.
- Objectives: <u>Explore & factor</u> items, <u>generate theory</u>.
- Models:

-Full component model.

-<u>Common factor model</u>.

• Full component model

- Extraction method: Principal component analysis (PCA)
- Data reduction \rightarrow For other analysis.
- Compress many variables → Smaller number of components.
- Sum of all variable variances = Sum of component variances.
- Measurement errors NOT considered.
- NOT the real FA!

• Common factor model

- Extraction methods:
 - Classical: Principal axis analysis.
 - Other variants: Image analysis, alpha analysis, maximum likelihood (ML).
- Common variances + Error variances.
- The 'Real' FA.
- Main results:
 - Number of factors extracted.
 - Factor loadings.
 - Factor-factor correlations.

- To simplify EFA results \rightarrow Factor <u>Rotation</u>:
 - Types:
 - Orthogonal method uncorrelated factors. – Varimax, Quartimax, Equamax
 - **Oblique method** correlated factors.

-Oblimin, Promax

• Obtain clear factors and factor loadings.

Classification

Exploratory FA/EFA
 Confirmatory FA/CFA

CFA

- Confirmatory analysis.
- Also common factor model.
- Structural Equation Modeling (SEM) analysis:
 - -<u>Measurement model (CFA)</u>
 - Structural model (path analysis)
- Commonly ML estimation.
- Model fit assessment.

CFA

- For example, factor explaining between these items:
 - I love fast foodI hate vegetableI hate eating fruitsI hate exercise

Strong theoretical basis from EFA, theory, LR.

CFA

I love cat I hate snake I love traveling I love snorkeling I support ABC football team I love driving car I love computer game I like to have everything in symmetry I love Twitter My favorite food is nasi ayam I enjoy eating pisang goreng I spend most of my time in front of computer I love Facebook

Factors? No idea \rightarrow EFA

EFA vs CFA

EFA	CFA	
Exploratory	Confirmatory	
No need theory	Theory	
Explore to get theory	Confirm theory	
Item not fixed to factor	Item fixed to factor	
Rotation	No rotation	

Hx testing & model fit

No Hx testing

5. Reliability

- Part of validity evidence.
- Types:
 - 1.Test-retest reliability
 - 2.Parallel-forms reliability
 - 3.Interrater reliability
 - 4. Internal consistency reliability

Internal consistency reliability

- <u>Consistent</u> responses in a construct.
- <u>Homogenous</u> $\rightarrow \uparrow$ Reliability.
- Heterogenous $\rightarrow \downarrow$ Reliability.
- Advantage: Measure 1x only.
- EFA: Cronbach's alpha coefficient.
- CFA: Omega coefficient.
- Not reliable $0 \rightarrow 1$ Perfectly reliable.
- Aim > 0.7.

References

Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: The Guilford Press.

Gorsuch, R. L. (2014). Exploratory factor analysis. New York: Routledge.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. New Jersey: Prentice Hall.

Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th eds.). New York: Taylor & Francis Group.

Tabachnick, B., & Fidell, L. (2007). Using multivariate statistics (5th ed.). USA: Pearson.

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338.